

SA639

Low voltage mixer FM IF system with filter amplifier and data switch

Low voltage mixer FM IF system with filter amplifier and data switch

DESCRIPTION

The SA639 is a low-voltage high performance monolithic FM IF system with high-speed RSSI incorporating a mixer/oscillator, two wideband limiting intermediate frequency amplifiers, quadrature detector, logarithmic received signal strength indicator (RSSI), fast RSSI op amps, voltage regulator, wideband data output, post detection filter amplifier and data switch. The SA639 is available in 24-lead TSSOP (Thin shrink small outline package).
The SA639 was designed for high bandwidth portable communication applications and will function down to 2.7 V . The RF section is similar to the famous NE605. The data output provides a minimum bandwidth of 1 MHz to demodulate wideband data. The RSSI output is amplified and has access to the feedback pin. This enables the designer to level adjust the outputs or add filtering.

The post-detection amplifier may be used to realize a low pass filter function. A programmable data switch routes a portion of the data signal to an external integration circuit that generates a data comparator reference voltage.

SA639 incorporates a power down mode which powers down the device when Pin 8 is high. Power down logic levels are CMOS and TTL compatible with high input impedance.

APPLICATIONS

- DECT (Digital European Cordless Telephone)
- FSK and ASK data receivers

FEATURES

- $\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V
- Low power consumption: 8.6 mA typ at 3 V
- Wideband data output (1MHz min.)
- Fast RSSI rise and fall times
- Mixer input to >500MHz
- Mixer conversion power gain of 9.2 dB and noise figure of 11 dB at 110 MHz

PIN CONFIGURATION

Figure 1. Pin Configuration

- XTAL oscillator effective to 150 MHz (L.C. oscillator to 1 GHz local oscillator can be injected)
- 92dB of IF Amp/Limiter power gain
- 25MHz limiter small signal bandwidth
- Temperature compensated logarithmic Received Signal Strength Indicator (RSSI) with a dynamic range in excess of 80 dB
- RSSI output internal op amp
- Post detection amplifier for filtering
- Programmable data switch
- Excellent sensitivity: $2.24 \mu \mathrm{~V}$ into 50Ω matching network for 10 dB SNR (Signal to Noise Ratio) with RF at 110 MHz and IF at 9.8 MHz
- ESD hardened
- Power down mode

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
24-Pin Plastic TSSOP (Thin Shrink Small Outline Package)	-40 to $+85^{\circ} \mathrm{C}$	SA639DH	SOT-355

Low voltage mixer FM IF system with filter amplifier and data switch

BLOCK DIAGRAM

Figure 2. Block Diagram

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{CC}	Single supply voltage	-0.3 to 6	V
$\mathrm{~V}_{\mathrm{IN}}$	Voltage applied to any other pin ${ }^{1}$	-0.3 to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right)$	
$\mathrm{T}_{\mathrm{STG}}$	Storage temperature range	-65 to +150	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range SA639 ${ }^{2}$	-40 to +85	${ }^{\circ} \mathrm{C}$

NOTE:

1. Except logic input pins (Pins 8 and 12) which can have 6 V maximum.
2. θ_{JA} Thermal impedance (DH package) $117^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

NOTE:

1. When the device is forced in power down mode via Pin 8 , the Data Switch will output a voltage close to 1.6 V and the state of the switch control input will have no effect.

Low voltage mixer FM IF system with filter amplifier and data switch

AC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$, unless otherwise stated. RF frequency $=110.592 \mathrm{MHz} ; \mathrm{LO}$ frequency $=120.392 \mathrm{MHz} ; \mathrm{IF}$ frequency $=9.8 \mathrm{MHz} ; \mathrm{RF}$ level $=-45 \mathrm{dBm} ; \mathrm{FM}$ modulation $=576 \mathrm{kHz}$ with $\pm 288 \mathrm{kHz}$ peak deviation, discriminator tank circuit $\mathrm{Q}=4$. The parameters listed below are tested using automatic test equipment to assure consistent electrical characteristics. The limits do not represent the ultimate performance limits of the device. Use of an optimized RF layout will improve many of the listed parameters.

Low voltage mixer FM IF system with filter amplifier and data switch

AC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS					UNITS
			SA639					
			MIN	-3\%	TYP	+3 ${ }^{\text {a }}$	MAX	
Post detection filter amplifier								
	Amplifier 3dB bandwidth	$\begin{gathered} \hline \text { AC coupled: } R_{L}=10 \mathrm{k} \Omega, \\ C_{L}=33 \mathrm{pF} \end{gathered}$		11.7	12.8	13.8		MHz
	Amplifier gain	AC coupled: $R_{L}=10 \mathrm{k} \Omega$, $V_{\text {OUT DC }}=1.6 \mathrm{~V}$			-0.2			dB
	Slew rate	$\begin{gathered} \text { AC coupled: } R_{L}=10 \mathrm{k} \Omega, \\ C_{L}=33 \mathrm{pF} \end{gathered}$			2.4			V/us
	Input resistance		300					k Ω
	Input capacitance						3	pF
	Output impedance				150		800	Ω
	Output load resistance	AC coupled	5					k Ω
	Output load capacitance ${ }^{1}$	AC coupled			30			pF
	DC output level ${ }^{2}$		1.5	1.682	1.7	1.718	1.9	V
Data switch								
	DC input voltage range ${ }^{3}$		1.2		1.6		2.0	V
	AC input swing				400			$\mathrm{mV} \mathrm{P}_{\text {- }}$
	Input impedance		100					k Ω
	Input capacitance						5	pF
	Output load resistance				500			Ω
Through Mode (Pin 12 = LOW)								
	AC voltage gain ${ }^{4}$				-1.5			dB
	Output drive capability	Sink/source, $\mathrm{V}_{\text {OUT }}$ DC $=1.6 \mathrm{~V}$	3					mA
	Slew rate	$\mathrm{V}_{\text {OUT DC }}=1.6 \mathrm{~V}$			>14.0			V/ $/ \mathrm{s}$
	Static offset voltage ${ }^{5}$	$\mathrm{V}_{\text {IN DC }}=1.2$ to 2.0 V		-0.6	0.30	1.2	± 5	mV
	Dynamic offset voltage ${ }^{2,6}$	$\begin{gathered} \mathrm{V}_{\mathrm{INDC}}=1.4 \text { to } 2.0 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{CC}}=3.0 \text { to } 5.0 \mathrm{~V} ; \\ \text { RF level }=-70 \text { to }-40 \mathrm{dBm} \end{gathered}$	-7				+7	mV
		$\begin{gathered} \mathrm{V}_{\mathrm{IN} D C}=1.4 \text { to } 2.0 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{CC}}=3.0 \text { to } 5.0 \mathrm{~V} ; \\ \text { RF level }=-40 \text { to }-5 \mathrm{dBm} \end{gathered}$	-10				+10	
Tri-State Mode (Pin 12 = HIGH)								
	Output leakage current	$\mathrm{V}_{\text {OUT DC }}=1.2$ to 2.0 V		9.5	20	30.5	100	nA

NOTES:

1. Includes filter feedback capacitance, comparator input capacitance. PCB stray capacitances and switch input capacitance.
2. Demodulator output DC coupled with Post Detection Filter Amplifier input and the demodulator tank exactly tuned to center frequency.
3. Includes DC offsets due to frequency offsets between Rx and Tx carrier and demodulator tank offset due to mis-tuning.
4. With a $400 \mathrm{mV} V_{P-P}$ sinusoid at 600 kHz driving Pin 10. Output load resistance 500Ω in series with 10 nF .
5. With a DC input and capacitor in the RC load fully charged.
6. The switch is closed every 10 ms for a duration of $40 \mu \mathrm{~s}$. The DC offset is determined by calculating the difference of 2 DC measurements, which are determined as follows: 1) The first DC value is measured at the integrating capacitor of the switch when the switch is in the closed position immediately before it opens. The value to be measured is in the middle of the peak-to-peak excursion of the superimposed sine-wave. (DClow + (DChigh - DClow)/2). 2) The second DC value (calculated as above) is measured at Pin 11 immediately after the switch opens, and is the DC value which gives the largest DC offset to the first DC measurement within a $400 \mu \mathrm{~s}$ DECT burst. Minimum and maximum limits are not tested, however, they are guaranteed by design and characterization using an optimized layout and application circuit.
7. Standard deviations are measured based on application of 60 parts.

Low voltage mixer FM IF system with filter amplifier and data switch

CIRCUIT DESCRIPTION

The SA639 is an IF signal processing system suitable for second IF or single conversion systems with input frequency as high as 1 GHz . The bandwidth of the IF amplifier is about 40 MHz , with $44 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. The bandwidth of the limiter is about 28 MHz with about $58 \mathrm{~dB}(\mathrm{v})$ of gain from a 50Ω source. However, the gain/bandwidth distribution is optimized for $9.8 \mathrm{MHz}, 330 \Omega$ source applications. The overall system is well-suited to battery operation as well as high performance and high quality products of all types, such as digital cordless phones.

The input stage is a Gilbert cell mixer with oscillator. Typical mixer characteristics include a noise figure of 11 dB , conversion power gain of 9.2 dB , and input third-order intercept of -9.5 dBm . The oscillator will operate in excess of 1 GHz in L/C tank configurations. Hartley or Colpitts circuits can be used up to 100 MHz for xtal configurations. Butler oscillators are recommended for xtal configurations up to 150 MHz .

The output of the mixer is internally loaded with a 330Ω resistor permitting direct connection to a 330Ω ceramic filter. The input resistance of the limiting IF amplifiers is also 330Ω. With most 330Ω ceramic filters and many crystal filters, no impedance matching network is necessary. To achieve optimum linearity of the log signal strength indicator, there must be a $6 \mathrm{~dB}(\mathrm{v})$ insertion loss between the first and second IF stages. If the IF filter or interstage network does not cause 6dB(v) insertion loss, a fixed or variable resistor can be added between the first IF output (Pin 20) and the interstage network.

The signal from the second limiting amplifier goes to a Gilbert cell quadrature detector. One port of the Gilbert cell is internally driven by the IF. The other output of the IF is AC-coupled to a tuned quadrature network. This signal, which now has a 90° phase relationship to the internal signal, drives the other port of the multiplier cell.

Overall, the IF section has a gain of 90 dB . For operation at intermediate frequency at 9.8 MHz . Special care must be given to layout, termination, and interstage loss to avoid instability.

The demodulated output (DATA) of the quadrature is a low impedance voltage output. This output is designed to handle a minimum bandwidth of 1 MHz . This is designed to demodulate wideband data, such as in DECT applications.

Post Detection Filter Amplifier

The filter amplifier may be used to realize a group delay optimized low pass filter for post detection. The filter amplifier can be configured for Sallen \& Key low pass with Bessel characteristic and a 3 dB cut frequency of about 800 kHz .

The filter amplifier provides a gain of 0 dB . The output impedance is less than 500Ω in order to reduce frequency response changes as a result of amplifier load variations. The filter amplifier has a 3dB bandwidth of at least 4 MHz in order to keep the amplifier's
frequency response influence on the filter group delay characteristic at a minimum. At the center of the carrier it is mandatory to provide a filter output DC bias voltage of 1.6 V in order to be within the input common mode range of the external data comparator. The filter output DC bias voltage specification holds for an exactly center tuned demodulator tank and for the demodulator output connected to the filter amplifier input.

Data Switch

The SA639 incorporates an active data switch used to derive the data comparator reference voltage by means of an external integration circuit. The data switch is typically closed for $10 \mu \mathrm{~s}$ before and during reception of the synchronization word pattern, and is otherwise open. The external integration circuit is formed by an R/C low pass with a time constant of 5 to $10 \mu \mathrm{~s}$.

The active data switch provides excellent tracking behavior over a DC input range of 1.2 to 2.0 V . For this range with an RC load (no static current drawn), the DC output voltage will not differ more than $\pm 5 \mathrm{mV}$ from the input voltage. Since the active data switch is designed to behave like a non-linear charge pump (to allow fast tracking of the input signal without slew rate limitations under dynamic conditions of a 576 kHz input signal with $400 \mathrm{mV} \mathrm{V}_{\text {P-P }}$ and the RC load), the output signal will have a $340 \mathrm{mV} V_{\text {P-p }}$ output with a DC average that will not vary from the input DC average by more than $\pm 10 \mathrm{mV}$.

The data switch is able to sink/source 3mA from/to the external integration circuit in order to minimize the settling time after long power-down periods (DECT paging mode). In addition, during power-down conditions a reference voltage of approximately 1.6 V will be used as the input to the switch. The switch will be in a low current mode to maintain the voltage on the external RC load. This will further reduce the settling time of the capacitor after power-up. It should be noted that during power-down the switch can only source and sink a trickle current $(10 \mu \mathrm{~A})$. Thus, the user should make sure that other circuits (like the data comparator inputs) are not drawing current from the RC circuit.

The data switch provides a slew rate better than $1 \mathrm{~V} / \mu$ s in order to track with system DC offset from receive slot to receive slot (DECT idle lock or active mode). When the data switch is opened the output is in a tri-state mode with a leakage current of less than 100 nA . This reduces discharge of the external integration circuit. When powered-down, the data switch will output a reference of approximately 1.6 V to maintain a charge on the external RC circuit.

A Receive Signal Strength Indicator (RSSI) completes the circuitry. The output range is greater than 80 dB and is temperature compensated. This log signal strength indicator exceeds the criteria for DECT cordless telephone. This signal drives an internal op amp. The op amp is capable of rail-to-rail output. It can be used for gain, filtering, or 2nd-order temperature compensation of the RSSI, if needed.

NOTE: $\mathrm{dB}(\mathrm{v})=20 \log \mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$

Low voltage mixer FM IF system with filter amplifier

 and data switchPIN FUNCTIONS All DC voltages measured with Pin $8=\operatorname{Pin} 12=\operatorname{Pin} 19=0 \mathrm{~V}$, $\operatorname{Pin} 5=3 \mathrm{~V}$ and $\operatorname{Pin} 9$ connected to $\operatorname{Pin} 10$.

$\begin{aligned} & \hline \text { PIN } \\ & \text { No. } \end{aligned}$	PIN MNEMONIC	DC V	EQUIVALENT CIRCUIT	$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	PIN MNEMONIC	DC V	EQUIVALENT CIRCUIT
1	RF IN	+1.07		6	RSSI FEEDBACK	+0.20	
2	$\begin{gathered} \text { RF } \\ \text { BYPASS } \end{gathered}$	+1.07		7	RSSI OUT	+0.20	
3	$\begin{aligned} & \text { XTAL } \\ & \text { OSC } \end{aligned}$	+1.57		8	POWER DOWN	0.00	
4	$\begin{gathered} \text { XTAL } \\ \text { OSC } \end{gathered}$	+2.32		9	DATA OUT	+1.7	
5	V_{CC}	+3.00		10	$\begin{gathered} \text { POST } \\ \text { AMP } \\ \text { IN } \end{gathered}$	+1.70	

Figure 3. Pin Functions

Low voltage mixer FM IF system with filter amplifier

 and data switchPIN FUNCTIONS (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { PIN } \\
\& \text { No. }
\end{aligned}
\] \& PIN MNEMONIC \& DC V \& EQUIVALENT CIRCUIT \& PIN No. \& PIN MNEMONIC \& DC V \& EQUIVALENT CIRCUIT \\
\hline 11 \& \[
\begin{aligned}
\& \text { POST } \\
\& \text { AMP } \\
\& \text { OUT }
\end{aligned}
\] \& +1.70 \& \& \begin{tabular}{|c|}
16 \\
17 \\
17 \\
18
\end{tabular} \& \begin{tabular}{l}
LIMITER DECOUP \\
LIMITER COUPLING \\
LIMITER \\
IN
\end{tabular} \& +1.23
+1.23
+1.23 \& \\
\hline \& \& \& \& 19 \& GND \& 0 \& \\
\hline 12 \& SWITCH CONTROL \& 0.00 \& \& 20 \& \begin{tabular}{l}
IF \\
AMP OUT
\end{tabular} \& +1.22 \& \\
\hline 13 \& SWITCH OUT \& +1.70 \& \& 21 \& IF AMP DECOUP \& +1.22 \& \\
\hline 14 \& QUAD IN \& +3.00 \& \& 22

23 \& | AMP IN |
| :--- |
| IF AMP |
| DECOUP | \& +1.22 \&

\hline 15 \& LIMITER OUT \& +1.35 \& \& 24 \& MIXER OUT \& +1.03 \& SR00033

\hline
\end{tabular}

Figure 4. Pin Functions (cont.)

Low voltage mixer FM IF system with filter amplifier and data switch

Figure 5. SA639 Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Performance Characteristics

Low voltage mixer FM IF system with filter amplifier and data switch

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 7. Typical Performance Characteristics (cont.)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 8. Typical Performance Characteristics (cont.)

Low voltage mixer FM IF system with filter amplifier and data switch

Figure 9. SA639 RSSI Rise Time

Figure 10. SA639 RSSI Fall Time

Figure 11. SA639 System Dynamic Response

Figure 12. SA639 Data Switch Activation Time

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	1.10	0.15	0.95	0.25	0.30	0.2	7.9	4.5	0.65	6.6	1.0	0.75	0.4	0.2	0.13	0.1	0.5	8°
	0.05	0.80	0.2	0.19	0.1	7.7	4.3	0.6	6.2	1.2	0.50	0.3	0.2	0°				

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT355-1		MO-153AD			$\begin{gathered} \hline 93-06-16 \\ 95-02-04 \end{gathered}$

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

